If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-45+3x^2=-6x
We move all terms to the left:
-45+3x^2-(-6x)=0
We get rid of parentheses
3x^2+6x-45=0
a = 3; b = 6; c = -45;
Δ = b2-4ac
Δ = 62-4·3·(-45)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-24}{2*3}=\frac{-30}{6} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+24}{2*3}=\frac{18}{6} =3 $
| 0=m-21 | | 8(2x-4)=12 | | 7.7=r-3.2 | | 7(6x+1)=11 | | 3x-3x=x+8+-3 | | w-25=15 | | 2(-3y-5)=3y+8 | | 83=n+16 | | 5=3(3y-8) | | -56=-w/4 | | 8(2x-5)=13 | | 29.9=w-16.4 | | 3(3x-10)=13 | | 5x(x+1)=45+5x | | 9=3(8p-13) | | 4p+9=24 | | 13=2(5x-15) | | 5x^2+3x+2=142 | | 3(z-3)=12 | | 9(2y-11)=6 | | -3y^2-15y-18=0 | | -y^2-5y-6=0 | | 4.8/x=12/18 | | 6x-4=-1.9x+5 | | k^2-7k+4=-2 | | x-4/3=19 | | 14-y=32 | | 21-x=1 | | 90x+60=410 | | x-2/7=2/3 | | 8/(x-2)=28/(x-1) | | 6x(2)=12 |